VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis.
نویسندگان
چکیده
OBJECTIVE Histone acetylation/deacetylation plays an important role in the control of gene expression, tissue growth, and development. In particular, histone deacetylases 7 (HDAC7), a member of class IIa HDACs, is crucial in maintaining vascular integrity. However, whether HDAC7 is involved in the processes of vascular endothelial signaling and angiogenesis remains unclear. Here, we investigated the role of HDAC7 in vascular endothelial growth factor (VEGF) signaling and angiogenesis. METHODS AND RESULTS We show for the first time that VEGF stimulated phosphorylation of HDAC7 at the sites of Ser178, Ser344, and Ser479 in a dose- and time-dependent manner, which leads to the cytoplasmic accumulation of HDAC7. Using pharmacological inhibitors, siRNA, and adenoviruses carrying dominant-negative mutants, we found that phospholipase Cgamma/protein kinase C/protein kinase D1 (PKD1)-dependent signal pathway mediated HDAC7 phosphorylation and cytoplasmic accumulation by VEGF. Infection of ECs with adenoviruses encoding a mutant of HDAC7 specifically deficient in PKD1-dependent phosphorylation inhibited VEGF-induced angiogenic gene expression, including matrix metalloproteinases MT1-matrix metalloproteinase (MMP) and MMP10. Moreover, HDAC7 and its targeting genes were involved in VEGF-stimulated endothelial cell migration, tube formation, and microvessel sprouting. CONCLUSIONS Our results demonstrate that VEGF stimulates PKD1-dependent HDAC7 phosphorylation and cytoplasmic accumulation in endothelial cells modulating gene expression and angiogenesis.
منابع مشابه
Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases.
Matrix metalloproteinases (MMPs) are endopeptidases that play pivotal roles in promoting tumor disease progression, including tumor angiogenesis. In many solid tumors, MMP expression could be attributed to tumor stromal cells and is partially regulated by tumor-stroma interactions via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). The role of EMMPRIN during tumo...
متن کاملStudy of Antimetastatic Effect of Genistein Through Inhibition of Expression of Matrix Metalloproteinase in A-549 Cell Line
The lung cancer is one of the most dangerous cancers and is also the leading cause of cancer death worldwide, accounting for about 1.3 million deaths annually. However in clinical practice, lung cancer therapies commonly do with chemotherapy, although it is hard because the lung cancer may progress to metastasis stage. The metastasis of lung cancer is highly dependent of expression of matrix me...
متن کاملTroglitazone inhibits vascular endothelial growth factor-induced angiogenic signaling via suppression of reactive oxygen species production and extracellular signal-regulated kinase phosphorylation in endothelial cells.
Thiazolidinediones, peroxisome proliferators-activated receptor gamma (PPARgamma) ligands, have been recognized as a potential therapeutic agents for the treatment of pathological neovascularization. In the present study, we examined the molecular mechanism by which troglitazone (TROG), a PPARgamma agonist, exerts its inhibitory action in vascular endothelial growth factor (VEGF)-induced angiog...
متن کاملAngiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation.
Angiotensin II (Ang II)-mediated signals are transmitted via heparin binding epidermal growth factor (EGF)-like growth factor (HB-EGF) release followed by transactivation of EGF receptor (EGFR). Although Ang II and HB-EGF induce angiogenesis, their link to the angiopoietin (Ang)-Tie2 system remains undefined. We tested the effects of Ang II on Ang1, Ang2, or Tie2 expression in cardiac microvasc...
متن کاملGlioma Xenograft Growth and Angiogenesis Membrane-type 1 Matrix Metalloproteinase Stimulates Human Up-Regulation of Vascular Endothelial Growth Factor by Updated Version
Membrane-type (MT) 1 matrix metalloproteinase (MMP) is upregulated in many tumor types and has been implicated in tumor progression and metastasis. MT1-MMP is critical for pericellular degradation of the extracellular matrix, thereby promoting tumor cell invasion and dissemination. To grow efficiently in vivo, tumor cells induce angiogenesis in both primary solid tumors and metastatic foci. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2008